CASCANTE-BONILLA ET AL.: EVOLVING IMAGE COMPOSITIONS 15

A Supplementary Material

First, we illustrate our whole training and inference steps in Figure ??. Next, we illustrate an
example of our genetic search approach for three classes in Figure 3, and we also show some
mutation examples in Figure 4. In section A.1 we include further analysis for the manifold
intrusion problem. Next, we show some qualitative examples for the Weakly Supervised
Object Localization and Object Detection experiment using the Class Activation Mapping
(CAM) in A.2. Additional ablation studies for PatchMix varying architectures, the supervi-
sion effect of the patches, and the grid size (number of P patches) are shown in section 5.5.
We also include results when varying the genetic search fitness function and training crite-
rion for our guided PatchMix approach in section 5.6. We show in-depth results of the search
performance of our genetic algorithm for CIFAR-10 in section A.5. Finally, we discuss the
computational overhead of PatchMix compared to other similar interpolation approaches in
el

section A.7.
ﬁﬁ EE@ - vr-n)¢-n rwAUA ’Cuﬂ
B ABE R

Ac!ve
Indivi d al #1 Individual #2 / Individual #3 Individual #4 m
w

‘“u mmm “ (comnnes
Fnest
. /)

THER j‘“‘ﬁ AE XK EES
THEER EER AR XK Hri

A Mutate

Evaluate

Py

elect

S

S

Figure 3: Overview of our genetic search over patch combination strategies for a three-
way dog, cat, ship classifier. First, we randomly sample a population of four individuals
containing a set of Grid Mask configurations for all combinations. Then we evaluate them
using our fitness function (i.e., our PatchMix algorithm), and the individuals with the less
accurate predictions get selected. We randomly pick two individuals to crossover and create
anew individual (i.e., offspring), and a copy of the best individual is mutated. The next cycle
begins with the evaluation of the current pool of individuals, and the process repeats.

A.1 Manifold Intrusion Analysis.

We show in Figure 5 the effect in the decision boundary for a three-way classifier on synthetic
data when using different interpolations such as Mixup, Cutout, and our proposed PatchMix.

The main advantages of PatchMix include preventing the over-sampling of synthetic data
that is prone to suffer the manifold intrusion problem during training. We train a two-layer
neural network to classify a toy dataset with three linearly separable classes. Since we are
using only two features per class, the Cutmix and Random PatchMix interpolations behave
similarly (for both cases, the random masks have only two choices: 0|0, 1|0, 0|1 or 1|1).

16 CASCANTE-BONILLA ET AL.: EVOLVING IMAGE COMPOSITIONS

3

]
|

a
>
1

a

_—
Flip Tails

4]
|

1
a

[

PY
(2
E

s

—_—

Transpose

s
(2
1
s
E |
(2
s
(2

)

1
a8

—_—
Flip Heads

|
T
I=F

i~
I: =
o=

1

;)

s
=

w-d|w-n|d-n

1
EY

—_—

it
=
m
T
B

Random Tails

Figure 4: Mutation examples. The original individual is in the left and its mutated version is
in the right. The flip tails operation exchange all the values from the active mask configura-
tions. The transpose operation switches the row and column indices of each patch. The flip
heads operation randomly exchange the active configurations. The random tails operation
randomly activate and deactivate some values of the active masks.

(a) Synthetic Data (b) Mixup —95.62% (c) Cutout —97.71% (d) GridMix —98.75% (f) Guided GridMix — 98.96%

Figure 5: Effect of different data interpolation techniques on the decision boundary for a
classification task.

While all interpolation techniques smooth the decision boundaries, Mixup and Cutout suffer
from the manifold intrusion problem, hurting the model. Our guided version of PatchMix
induces a better decision boundary by adding predefined combinations based on difficult
mixed samples.

A.2 Weakly Supervised Object Localization and Object Detection.

Figure 6 shows some results for the weakly supervised object localization task on CUB-
200-2011 dataset trained on ResNet-50. We show qualitative results when using the CAM
baseline, Mixup, CutMix and PatchMix. The ground truth bounding boxes are shown in red
and the predicted bounding boxes are shown in light green. We use the Class Activation
Mapping (CAM) to extract the attention maps, and then we compute the maximal box ac-
curacy, which is the bounding box accuracy and the Intersection over Union (IoU) of the
proposed boxes.

CASCANTE-BONILLA ET AL.: EVOLVING IMAGE COMPOSITIONS 17

Cutmix

PatchMix

Figure 6: Weakly supervised object localization task on CUB-200-2011 dataset trained on
ResNet-50. The ground truth bounding boxes are shown in red and the predicted bounding
boxes are shown in light green.

A.3 Analysis on Search for Guided Pairs & Masks

Figure 8 shows the evolution of our fitness function when searching for the grid mask con-
figurations on CIFAR-100 over 250 generations. Since we are looking for the most infor-
mative samples, we want to find the class combinations and grid configurations for which a
pretrained Random PatchMix struggles the most. Hence, our criteria for fitness allows the
discovery of individuals that contribute with more information as explained in our method
section. We observe that during the search process, some class combinations get discarded
systematically in the search process. For instance, the model initially selects the pairs (plain,
seal), (chimpanzee, mushroom), but those are discarded after 50 generations and more infor-
mative combinations are selected. After 100 generations, the model has discovered many of
the class combinations that it will use, such as (chimpanzee, raccoon), (road, tractor), and
(sea, shark).

Evolutionary search has been used in previous work for neural architecture search (NAS)
where a space of possible network designs is explored, and can be extended for data augmen-
tation where a combinatorial space of image transformations are explored. In both cases, the
bottleneck is to evaluate each configuration — as it requires training a deep neural network
to assess these choices. Our work goes beyond that as we are able to entirely bypass any
amount of training. Our idea of using a PatchMix model pretrained on random configura-
tions to define a fitness criteria allows for this to happen.

— average

—— minimum

—— maximum

0.30 " T
¢s v

td €F pE oo

0.20

0 50 100 150 200 250
Generation

Figure 7: Performance of our genetic search after 250 generations on CIFAR-100. The
y axis shows the top-1 accuracy of the population evaluated on our fitness function. We
highlight some class combinations included and excluded every 50 generations.

18 CASCANTE-BONILLA ET AL.: EVOLVING IMAGE COMPOSITIONS
A.4 Additional Ablation Studies.

In this section we show additional results when varying the grid size (number of P patches),
the model architecture and whether the image or patch supervision are used in the training
process. Table 8 shows that using the image level supervision along with the patch level
supervision consistently outperforms all other variations. Furthermore, in all architectures a
grid size of 4 x 4 outperforms other grid size possible selections.

Grid | Image-level | Patch-level | Top-1 Acc
loss Lo loss Lp

2x2 v v 9453
o | 2%2 v X 93.78
Ll 2x2 X v 94.03
Z [4%x4 v v 95.28
S| 4xa v X 94.97
5 | 4x4 X v 94.73
S 8x3 v v 94.08
~ | 8x8 v X 92.84

8x8 X v 92.57

2x2 v v 94.55
3 | 2x2 v X 94.27
= 2x2 X v 94.53
2 [4x4 v v 96.32
5| 4x4 v X 94.56
| axa X v 94.37
<[8x8 v v 94.60
£ | 8x8 v X 94.03

8x8 X v 93.86

Table 8: Ablation analysis: Top-1 accuracy on CIFAR-10 when varying the grid size, and
the effect of using image and patch level supervision using different network backbones.

A.5 Additional Search Performance

Figure 8 shows how the evolution of our fitness function when searching for the grid mask
configurations on CIFAR-10 over 250 generations. Since we are looking for the most dif-
ficult samples, we want to find the class combinations and grid configurations for which
a pretrained model using PatchMix with random sampling struggles the most. Hence our
criteria for fitness is individuals that score the lowest under this criteria as explained in our
method section. We observe that when searching the space, even the score of the individuals
with the best top-1 accuracy drops, which is expected in our setup. We also observe that dur-
ing the search process, some class combinations get discarded systematically in the search
process. For instance, the model initially selects the pair (automobile, bird), and (airplaine,
deer), but those pairs are discarded after 50 generations and more informative combinations
such as (automobile, airplane) are selected. After 100 generations, the model has already
discovered many of the class combinations that it will use such as (automobile, airplane),

CASCANTE-BONILLA ET AL.: EVOLVING IMAGE COMPOSITIONS 19

(dog, horse), (dog, cat), and after 150 epochs converges to a set of categories and the grid
mask patterns stabilize as well. Finally, at around epoch 200, the best individual containing
the best pairs and mask patterns is chosen.

A.6 Impact of Selected Number of Configurations

We also show in Table 9 the impact of using different amounts of active combinations when
evaluating our approach with CIFAR-100. In general, the search algorithm performs better
when setting a limited amount of active combinations N equal to the number of classes. We
also observe that the best results are achieved when using only the discovered class combi-
nations. This also supports our rationale about the positive gains of the model when training
using the configurations discovered by our genetic algorithm. In general, our evolutionary
formulation is effective and yields the best results.

A.7 Computational Overhead

Random PatchMix does not add a significant overhead -our mask is randomly sampled-, and
the additional patch-level branches make the model ~ 20% larger; i.e., a modified model
did not surpass any of the available GPU capacity during our experiments. For our guided
version, the overhead depends on the number of classes and active combinations; i.e., for CI-
FAR10, using a set of 10 parallel processes to assess the fitness criterion, it would take ~ 4
hours to find the optimum combination. This can be further decreased for at least ~ 75% by
using a subset of the val. set randomly sampled from the whole val. set, shrinking the initial
population, and reducing the number of generations (we found that the genetic algorithm
stabilizes around the 60th generation, but we continue searching for 250 generations). Dur-
ing test time, Guided-PatchMix, does not add any significant overhead compared to other
similar methods.

N Comb Allow Same Class Pairs?
Yes No
200 77.00 78.53
300 76.61 717.55
1000 64.98 65.54

Table 9: Top-1 accuracy on CIFAR-100 when varying the number of active class combina-
tions. We also show the effect of using the same class pairs. We use PreAct-ResNet-164 as
the backbone network architecture.

Figure 9 shows the final top 10 class combinations found by the genetic algorithm on
CIFAR-10. When training using the guided approach, the combination of these classes are
more likely to be sampled. The evolutionary process selects many pairs that are semantically
close such as (dog, cat), (dog, horse), (ship, truck), or (ship, airplane).

A.8 Additional Implementation Details

In this section we present the pseudo-code to train our random and guided steps four our
PatchMix approach. We first train a network using Algorithm 1 in which we divide the last
convolutional layer of our network to output the same amount of patches like the ones defined

20 CASCANTE-BONILLA ET AL.: EVOLVING IMAGE COMPOSITIONS

—— average
minimum
0.40 i
i

0.35

Fitness

0.30

0.25

0 50 100 150 200 250
Generation

Figure 8: Performance of our genetic search after 250 generations on CIFAR-10. The y
axis shows the top-1 accuracy of the population evaluated on our fitness function, which is
a network trained with PatchMix and random sampling. For this example, the architecture
of the network is PreAct-ResNet-164. We highlight some class combinations included and
excluded every 50 generations.

A\ || || || Do
AV v v
@/ |V Vv
V4 v v
" v |V v
Vv v v
LAt v V| |V
& v
ol v W
I
=

vv
vv

Figure 9: Class combinations. The green checks correspond to the class combinations
found by our search algorithm. The blue checks correspond to the classes we force to always
appear in the combinations.

in the input. For example, the convolutional layer of the latest block in a ResNet50 will
output a tensor of shape [N, Cpy, Hour, Wou]; if the input corresponds to images of 224x224x3
and we divide our image in 16 patches (P = 4), C,,; = 2048 denotes the number of channels
and H,,; = 28, W,,; = 28 are the height and width of this output. Thus we can also divide
this output into a grid-like layer in which each patch would be of size 7x7. We then apply the
average pooling over each of these patches and finally the linear transformation to output the
probability distribution of each patch prediction. This network also outputs a separate branch
that takes into account the whole convolutional layer to predict the probability distribution of
each input image as a whole. We then use genetic search, which we define in Algorithm 2 to
find the best masks M; ; and category pairs (¢;,c;) that correspond to each of the discovered
class combinations. We then use M; ; to augment the training samples based on the class
combinations (c;, c;) discovered by our genetic search.

CASCANTE-BONILLA ET AL.: EVOLVING IMAGE COMPOSITIONS 21

Algorithm 1 Pseudo-code of our first step: Random PatchMix

1: Require: P
2: for (x, y) in (data_loader) do

b

index = torch.randperm(batch_size)
lam = random.beta(1, 1)
quad_mask_vals = random.beta(1, 1, size=[P, P]).round()
quadrant_size = int(image_size/P)
result =[]
for r in range(P) do
rows = full((quadrant_size,quadrant_size), quad_mask_vals[r,0])
for c in range(1, P) do
row_column = full((quadrant_size,quadrant_size), quad_mask_vals[r,c])
rows = concatenate((rows, row_column), axis=1)
result.append(rows)
image_mask = result.reshape(image_size,image_size)
layer_mask = result.reshape(layer_size,layer_size)
mixed_x = zeros((x.shape))
mixed_x = x*image_mask + x[index]*(1-image_mask)
new_y =[]
layer_mask = list(layer_mask.flatten())
for m in layer_mask do
if m == 0 then
new_y.append(y[index])
else: new_y.append(y)

lam = layer_mask.count(1)/len(layer_mask)

patch_output, image_output = model(mixed_x)

Lp = patch_level_criterion(patch_output, new_y, class_criterion, grid_range = P?)
Lo =image_level_criterion(class_criterion, image_output, y, y[index], lam)
loss=(Lo+Lp)/2

update(model)

30: end

22 CASCANTE-BONILLA ET AL.: EVOLVING IMAGE COMPOSITIONS

Algorithm 2 Pseudo-code of our Evolutionary Search

1: head = get_array_activations()
tail = get_array_configurations()
population = []
for i in range(total_pop) do
tmp_indiv = zeros(head)
selected_head = random.sample(range(index_head), new_comb_count)
tmp_indiv[selected_head] = 1
tmp_indiv[default_head] = 1
tmp_indiv_tail = random.randint(0, 2, tail)
individual = list(concatenate((tmp_indiv, tmp_indiv_tail)))
individual = creator(individual)
population.append(individual)
: toolbox = DEAP.Toolbox()
toolbox.register("population”, load_population(), population_size)
: toolbox.register("evaluate", eval_population())
: toolbox.register("mate", crossover(), prob=0.50)
: toolbox.register("mutate", mut_ops(), prob=0.30)
18: toolbox.register("select", toolbox.selTournament, tournsize=3)
19: for gen in range(0, args.generations) do

R A A S

_ ==
M2 e

—_— e e e

20: offspring = toolbox.select(population, len(population))

21: offspring = algorithms.varAnd(offspring, toolbox, cxpb, mutpb)
22: invalid_ind = [ind for ind in offspring if not ind.fitness.valid]

23: fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)

24: for ind, fit in zip(invalid_ind, fitnesses) do

25: ind.fitness.values = fit

26: if halloffame is not None then

27: halloffame.update(offspring)

28: population[:] = offspring

29: end

