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Abstract

Generating descriptions from images has been a challenging research topic that
intersects Computer Vision and Natural Language Processing (NLP). Image cap-
tioning is a difficult, yet important task that has recently been drawing much
attention. However, generating diverse and context-rich captions is not widely
studied, which could represent a limitation for a broader range of applications.
In this project, we present a novel approach to generate diverse captions using
Conditional Variational Auto-Encoders and deterministic attention.

1 Problem Definition

Generating images descriptions is a challenging task, it requires to detect which objects are in the
image, and also capture the representation and relations between these objects using natural language
sentences. Both tasks are considered as difficult problems; even descriptive language is sometimes
challenging for common understanding. Popular image datasets such as the MS-COCO dataset [8]
include image captions, and a popular task is to generate descriptions based on those images, but
generating context-rich captions requires understanding of the semantics in a given image.

Traditional models has successfully employed a combination of Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN) to generate captions from images [12, 10, 7], but they
are generally incapable of generating novel, more descriptive and diverse captions. In traditional
image captioning with deep neural networks, a CNN is used to extract a dense feature representation
at that represents the input image. This vector is used as the initial state of a RNN. At each iteration,
the RNN generates a predicted next word in a sentence given its previous state. Therefore, the result
from the CNN influences the following word predictions.

The ability to generate more descriptive, novel captions is valuable for suiting systems with the ability
to perceive semantic variations on the image compositions. The challenge is to be more accurate
about the visual alterations, instead of generating the same short caption for many different images.
The true challenge resides on getting diverse syntactic language representations from images, instead
of reproducing the ground-truth captions already seen on the sample collections. Some images can be
hard to interpret, the purpose of this project is to present a novel end-to-end solution to this problem.

2 Related Work

Attention mechanism has been employed to improve the state-of-the-art performance in many neural
machine translation tasks including [7, 1] by selectively referring back to the corresponding source
text. Xu et al. [12] also showed that visual attention is capable of improving caption generation
quality by assigning weights to the feature vector to focus on certain areas at every iteration of the
decoder network. Since then, visual attention has been widely adopted for generating more accurate
captions.



More recently, Variational Autoencoders (VAEs) have been explored for generating sentences.
Standard recurrent neural network language models generate one word at a time based on the previous
word, but this approach lacks global context over the sentence. Using VAEs for language modeling
has proven to exploit the characteristics of this generative approach to incorporate distributed latent
representations of entire sentences. Doing this, the system is capable of modeling more general
properties, such as style and high-level syntactic features [2, 5].

Additionally, prior work on exploiting VAEs and CVAEs for language models that include image
related tasks has shown successful results [6, 11]. In [6] the authors take advantage of this latent
variable model for Visual Question Answering (VQA) tasks. VQA is a research area about answering
questions based on an image and also involves both image recognition and natural language processing.
In [11] the authors explore image caption generation using CVAEs, augmenting the representation
with an additional data dependent latent variable, in which they use the annotated objects in a given
image. The main difference between this work and ours is that instead of using the data augmentation
and exploiting a Gaussian Mixture Model, we instead encourage the model to maintain the fixed
Gaussian prior and force the captioning decoder to rely mainly on the attention weights learned when
iterating over the whole captioning model.

3 Data

We use the MS COCO dataset [8] which is a widely used dataset for caption generation tasks. COCO
dataset contains 80 labels, 1.5 million object instances, and 330K images, of which more than 200K
are labeled. Each image contains 5 human-generated captions, which makes it an ideal dataset for
our caption generation task. We used 113.286 images for training, 5000 images for validation, and
5000 images for evaluation.

Figure 1: Examples of images in the COCO dataset. On the left hand side, we see captions explaining
two horses in water in a wooded area. However, no caption mentions the white stripes the horse on
the right or the fallen trees in the background. Moreover, the words brown or green never appear in
any of the captions. On the right hand side, 4 of the 5 captions mention the inside out umbrella, but
none mentions her clothes, the darkness of the image, or the puddle of water on the street.

4 Proposed Method

4.1 Overview

We propose an end-to-end model to generate diverse image descriptions for each input image using
a Conditional Variational Autoencoder (CVAE), where the encoder compresses data into a latent
space, and the decoder uses attention mechanism and generates captions given an image feature
representation and the latent representation. A diagram of the model is shown in Figure 1 for visual
illustration.
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Figure 2: Model diagram. Given an input image, a CNN is used to extract out a feature representation.
This feature representation acts as the initial hidden state of the encoder LSTM (bottom LSTM). After
a forward propagation, the last hidden state hT is obtained, but it is represented by a mean vector
and a standard deviation vector. Latent vector z is sampled from them via the reparametrization
trick, and it is given to the LSTM decoder network (above) as an initial input, along with the original
image feature representation. At each timestep t, the decoder outputs αti, which is multiplied to the
feature representation to become the context vector that tells the network which regions of the image
to "attend", or focus on, when generating wt. During training, teacher forcing is used. At test time,
beam search is used.

4.2 Encoder - LSTM

We first used a CNN–a pretrained ResNet [3] on Imagenet with 101 layers–that extracts out a feature
vector of size 2048, ai, given an input image. This representation is fed into the initial state of the
encoder, which is a Long-Short Term Memory (LSTM) [4]. The encoder additionally takes as input
one embedded word during each timestep, and at the last iteration, the hidden state hT is produced.
This hidden state contains rich information about the whole input (image and caption). It is then
processed through a set of linear layers to extract two separate vectors, one representing the mean
and the other representing the standard deviation of hT . Using the reparametrization trick, the latent
vector z is sampled from those two vectors.

4.3 Decoder - LSTM

The decoder gets two inputs before it starts getting the embedded words as inputs. First, z is fed into
the decoder along with the feature representation ai extracted from the pretrained Resnet. Note that z
is learned to model a Gaussian distribution to give a variable condition to the decoder. Lastly, the
decoder takes as input one embedded input word per timestep using the attention mechanism.

Attention mechanism works as follows: at each iteration t, the decoder uses a multi-layer perceptron
(MLP) fatt that is conditioned on the previous hidden state ht−1 and the ai to produce the attention
weight vector αt. To be mathematically precise,

eti = fatt(ht−1, at)

αti =
exp(eti)

Σkexp(etk)
.

Finally, the weights are multiplied to the feature representation ai to become the context vector ct. In
mathematical terms,

ct = Σiαti · ai.

These context vectors become the input to the LSTM in the next timestep, together with an embedded
input word. The logic behind attention mechanism is that by focusing on the areas of the input that
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Figure 3: Example of beam search with k = 3. At each iteration, top k words are chosen, and from
them the next k words are generated, and so on until the <end> tag is encountered. source: [9]

are highly correlated with wt, which is the word that is generated at time t, the more accurate wt will
be. Therefore, each wt is conditioned on the initial feature representation ai, the latent vector z,
attention context vector ct, and the previous words x1...xt−1. However, instead of feeding in the
prediction word wt−1 at timestep t, which can be incorrect, we feed the actual word xt. We used this
techniche (teacher forcing) due to its efficiency and accuracy demonstrated when training recurrent
neural network models.

4.4 Objective Loss Function

We use KL-Divergence to model the distribution of z as close to the Gaussian distribution as possible:

DKL[q(z|xi)||p(z)] = −Σiq(z|xi) · log(
p(z)

q(z|xi)
).

In addition, we use cross entropy of the generated words and target words when training the decoder:

Σj=1Aj · log(Pj),

where Aj represents the embedding of the actual next word and Pi represents the softmax of the
prediction.

Joining the two loss functions, we obtain out objective function:

L = ΣjAj · log(Pj)− Σiq(z|xi) · log(
p(z)

q(z|xi)
).

4.5 Inference

At test time, we only use the decoder to generate captions. When generating the captions instead of
directly choosing the word with the highest probability, we utilize beam search. Beam search works
as follows: when generating w0, we consider k words with the highest probability. Then for each of
the following timestep, choose k words with the highest probability given the k words in the previous
timestep. An example of beam search with k = 3 is illustrated in Figure 3 [9].

5 Experiments

We experimented by alternating the initial state order of the Decoder, introducing first the image
feature representations and then the latent vector z during and after training. Our conclusion was
that the LSTM initial vectors order had a considerable impact on the caption generation. We decided
to give priority to the latent vector z since it yielded better results. We also experimented changing
the dimensions of z, but that added to much variance to our model and the results were diverse but
extremely inaccurate.
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a man holding a surfboard on the beach

a man holding a surfboard
a group of people holding surfboards
young man with a surfboard
on a sunny day

flatbread kinds resemble balance on a beach

a man riding on the back of a brown horse

crouched man on a horse
barefoot man riding on the back of a horse
a woman riding on the back of a brown horse
water on the side of a river
dimly elevated horse is standing in the water

a man riding a wave on top of a surfboard

a surfer is riding a wave
crashing into the ocean
professional surfer riding a wave in the ocean
were laying on a surfboard
toilet event

a man riding on the back of a horse

a woman riding on the back of a horse
barefoot woman feeding a horse
a horse on a city street
a man on a horse
fisheye image

Figure 4: Example outcomes. The first caption is generated by the baseline model2. The other
captions are generated using our model. Note that our model also generates the baseline caption,
but in addition is able to figure out more fine grained and general characteristics of the image for its
corresponding description. For example, using the first image the model is able to figure out that it
is a sunny day. The last sentence demonstrates an example of poorly generated caption due to the
diversity enforced by the fixed Gaussian condition, even with the attention mechanism.

Figure 5: Attention mechanism in action is shown clearly in the caption "dimly elevated horse is
standing in the water". When the word "horse" is being generated, we can see that the model is
focusing its attention in the center of the image, which is where the horse is. On the other hand, when
the word "water" is being generated, the model is attending the periphery of the image.

We also experimented using different beam sizes, getting better results with k = 5. Figure 4
demonstrates a few examples of generated sentences given an input image. Figure 5 shows attention
mechanism in work.

6 Evaluation

We use the BLEU and the METEOR scores to evaluate the performance of generated caption in
Table 1. The BLEU score measures the similarity between sentences, and its main purpose is to
evaluate the exact word-to-word comparison between the ground truth and the generated sentence.
The METEOR score finds the optimal semantic alignment, by looking up for synonyms in WordNet
[9]. We believe that the two metrics, however, are not ideal for evaluating the task of generating
diverse captions, for diverse captions require the use of words that may not exist in ground truth. As
a result, one potential future work is to have human evaluation, such as through Amazon Mechanical
Turk, to generate scores for captions that aim to generate diverse captions.

7 Conclusion

We conclude by reiterating the importance of producing diverse captions in caption generation tasks.
Diverse captioning can explain the image more fully and therefore is widely applicable to many tasks.

2The baseline is a open-sourced implementation of the attention mechanism available here:
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
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BLEU4 METEOR
LSTM 0.413 0.285
CVAE 0.261 0.246

GMM-CVAE 0.371 0.274
A-CVAE (ours) 0.352 0.198

Table 1: Quantitative results. CVAE and GMM-CVAE are benchmark models from [11]. Note that
our model, A-CVAE (Attention-Conditional Variational Auto-Encoder), seems to perform poorer
than the LSTM and the benchmark models according to the metrics. However, diverse captions
are prone to result in lower scores for these metrics, and only human evaluation can be accurate
measurements for the performance of our model.

In this project, we have shown an end-to-end solution to the traditionally limited image captioning
task. The fixed Gaussian introduced by the latent vector allows the word prediction model to be more
diverse than the original caption generation models. Similarly, attention mechanism helps the model
to focus only on the parts of the image that matter the most when generating each word during each
timestep. As a result, by combining a conditional variational autoencoder and attention mechanism,
we are able to produce captions that are both accurate and diverse. The most accurate evaluation will
be human evaluation since the existing metrics fail to accurately evaluate diversity in captions.
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